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applied consequences for a range of disciplines such as 
conservation ecology, community ecology, global change 
biology and landscape management. However, strictly speak-
ing a complete Hutchinsonian hypervolume is intrinsically 
inestimable for two reasons (Whittaker et   al. 1973). First, 
its estimation would need to rely on observations of realized 
niches, in which the species is bound by an intricate web 
of biotic and abiotic constraints (Sober ó n 2010). Hence, 
measurements of the species ’  response to each variable would 
be biased by their intrinsic correlational structure (Whittaker 
et   al. 1973). Second, the number of axes composing the 
hypervolume in environmental space is virtually infi nite. 
As a consequence, fundamental niches cannot be properly 
predicted in geographic space, as it is not possible to iden-
tify all areas characterised by all combinations of biotic and 
abiotic conditions where the species could persist (Sober ó n 
2007, Peterson et   al. 2012). 

 Unaff ected by these limitations, the hunt for the funda-
mental niche is intensifying, and researchers attempt to make 
the challenge more achievable by focussing on an increasing 
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 Th e fundamental niche has been defi ned as the  ‘ n-
dimensional hypervolume [...] every point in which 
corresponds to a state of the environment which would 
permit [a species] to exist indefi nitely ’  (Hutchinson 1957). 
In other words, the fundamental niche is a theoretical 
construct defi ned in environmental space (as opposed to 
 ‘ geographic space ’ , both defi ned in Peterson and Sober ó n 
2012), describing the set of conditions ( ‘  … any property 
outside the organism under consideration ’ ) allowing a spe-
cies to have a positive growth rate. Hence, identifying a 
species ’  fundamental niche would allow understanding its 
requirements and predicting its distribution in geographic 
space under altered past, present or future environmen-
tal conditions (Buckley 2008), with major theoretical and 

                             Searching for the fundamental niche using individual-based habitat 
selection modelling across populations      

    Manuela     Panzacchi   * ,       Bram     Van Moorter   * ,       Olav     Strand  ,       Leif Egil     Loe     and         Egil     Reimers            

  M. Panzacchi (manuela.panzacchi@nina.no), B. Van Moorter and O. Strand, Norwegian Inst. for Nature Research, PO Box 5685 Sluppen, 
NO-7485 Trondheim, Norway.  –  L. E. Loe, Dept of Ecology and Natural Resource Management, Norwegian Univ. of Life Sciences, PO Box 
5003, NO-1432  Å s, Norway.  –  E. Reimers, Dept of Biology, Univ. of Oslo PO Box 1066, Blindern, NO-0316 Oslo, Norway.                               

 Strictly speaking, fundamental niches are inestimable. Nevertheless, ecologists attempt approximating them to understand 
species ’  distribution and plasticity to environmental changes, with invaluable repercussions on both theoretical and applied 
ecology. So far, individual-based habitat selection models only characterized realized niches of populations delimited by 
physical (e.g. fences), historical (colonization) and biotic (competition) barriers constraining access to a subset of resources 
available to the species. As populations with diff erent realized niches share the same fundamental niche, we developed a 
novel framework to scale-up response curves from population-scale habitat selection models to approximate the species ’  
optimal habitat choices, unbiased by barriers constraining accessibility. We used GPS-locations from 147 wild mountain 
reindeer  Rangifer t. tarandus , belonging to 7 of the remaining populations scattered throughout the subspecies ’  range. 
We linked individual choices to accessible habitat features using conditional-logistic regression with log-link function in 
a use-available design. Focal variables were modeled using 2nd degree polynomials on log-scale, which correspond to a 
Gaussian curve used to approximate the fundamental niche optimum (curve mean) and breadth (variance). Using both 
real and simulated data we demonstrate that robust approximations of a fundamental niche optimum and breadth can be 
estimated using a relatively small number of representative populations with relatively few individuals. While each 
classical realized niche model had strong predictive power for the focal population but poorly predicted across popula-
tions, the approximation of the fundamental niche allowed for robust inter-population comparisons in habitat quality. 
Th e proposed approach brings individual-based habitat selection models forward along the continuum from investigating 
the realized niche of a population towards investigating a species ’  fundamental niche, and allows us to quantify empiri-
cally the relationship between realized and fundamental niches. Th is allows improving the understanding of diff erences in 
fi tness among populations, the prediction of species ’  distributions and plasticity to environmental changes, and suggestions 
for mitigation priorities.   
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(Blonder et   al. 2014) but still low number of key variables 
using a multitude of approaches (Sober ó n and Peterson 
2005). Mechanistic approaches focus on the underlying 
processes driving patterns and hence, all other things being 
equal, they should be the most rigorous and robust when 
extrapolating beyond the observed conditions. Th ese models 
aim at scaling up the responses of individual traits like survival 
or reproduction to the full range of environmental variation, 
measured under controlled conditions (Kearney and Porter 
2004). Although in recent years mechanistic niche model-
ling has been advancing within theoretical frameworks of 
biophysical ecology, nutrition, and dynamic energy budget, 
due to the complexity of the task these models are applied 
only to simple organisms and to a narrow set of traits and 
variables (Kearney et   al. 2010, Barve et   al. 2011, Jankowski 
et   al. 2013). Besides, ethical and practical issues would ren-
der the required experimental manipulations unfeasible for 
most animal species, especially those of conservation issue. 
Finally, as mechanistic approaches are based on physiologi-
cal variables, they inherently ignore biotic interactions and 
 ‘ have little hope of taking them into account ’  (Sober ó n and 
Peterson 2005). Hence, notwithstanding their stronger the-
oretical justifi cation and the fact that they promise higher 
predictive power in altered ecological conditions compared 
to phenomenological (or statistical) models, no comparative 
assessment has been produced so far, and Schoener ’ s (1986) 
 ‘ mechanistic ecologist ’ s utopia ’  is yet to be attained (Kearney 
et   al. 2010). 

 Commonly, two types of correlative approaches are used 
to investigate ecological niches. Th e fi rst is a group of static, 
probabilistic techniques for species ’  distribution modelling, 
relating the observed geographical distribution of (frequently 
sessile) organisms to their present environment (Guisan and 
Zimmermann 2000, Th uiller et   al. 2009). Th e second group 
of techniques applies to vagile species and uses individual-
based movement data, commonly collected remotely, to 
measure the extent to which animals are selective in their 
habitat use (Manly et   al. 2002). Hence, this second approach 
uses spatio-temporal information on individual behavioural 
responses to the available range of values for a given set of 
biotic and abiotic conditions, and thus holds a much greater 
potential to understand the mechanisms generating space 
use patterns. Both approaches rely on the assumptions that 
individuals have the possibility to respond (either through 
their vital rates and/or movements) to the full range of avail-
able values for a given variable, and that their locations or 
environmental choices refl ect their ecological requirements. 
Th e latter assumption is most often true; in our case for 
example Nilsen et   al. (pers. comm.) found a good corre-
spondence between habitat quality (estimated by the model 
presented here) and fi tness-related parameters. However, the 
former assumption is regularly violated due to historical (e.g. 
colonization history), biotic (e.g. competition, predation), 
or physical (e.g. fences, oceans) barriers to dispersal, which 
prevent assessing individual response curves to the full range 
of accessible values for a given variable. Consequently, both 
correlational approaches only describe the reduced hypervol-
ume in which a species or population exists  –  i.e. the realized 
niche  –  but failed so far to reveal the species ’  fundamen-
tal niche (Guisan and Zimmermann 2000, Peterson and 
Sober ó n 2012). Th e problem is less marked when modelling 

species ’  distribution in a macro-ecological framework for 
sessile species with limited dispersal abilities, as the wide-
ranging datasets commonly used minimize the diff erences 
between realized and fundamental niches. Hence, the  ‘ funda-
mental niche ’  concept appears often in the jargon of species ’  
distribution modelling. On the contrary, the issue becomes 
more severe when using individual-based movement data 
which, until recently, have been available only for limited 
spatio-temporal windows (Hirzel and Le Lay 2008). Hence, 
individual-based studies typically refer to a small subset of 
the conditions potentially available to the species and, thus, 
virtually always avoid the fundamental niche concept. In 
the last decade however, the widespread use of animal-borne 
technologies such as GPS devices has made available mas-
sive amounts of high-resolution individual-based movement 
data, which no longer represent a major limiting factor for 
the study of animal – habitat relationships (Hebblewhite and 
Haydon 2010). What is still lacking is a theoretical frame-
work for scaling-up movements of individuals to infer the 
species ’  habitat preferences and, ultimately, fi tness (Gaillard 
et   al. 2010, Morales et   al. 2010, Owen-Smith et   al. 2010). 
Although variations in habitat selection related to availability 
are well documented (Fortin et   al. 2008, Mayor et   al. 2009), 
to our knowledge no solution has been proposed so far to 
overcome the limitations imposed by physical (e.g. fences), 
historic (e.g. colonization) or biotic (e.g. competition) 
constraints to movements and move individual-based habi-
tat preference studies along the continuum leading from 
investigating the realized niche of a population towards 
approximating the species ’  fundamental niche. 

 As Hutchinson (1957) observed, the fundamental niche 
is the volume in the environmental space that permits 
positive probability of survival of a species. Such volume is 
delimited by the  ‘ zero net growth isocline ’  (Tilman 1980), 
where the species ’  growth rate is null (dN/dt    �    0; Fig. 1). 
Within this line, or  ‘ envelope ’  (Hirzel and Le Lay 2008), 
heterogeneous environments provide a gradient in environ-
mental conditions ranging from an optimum, allowing the 
species to reach its highest growth rate, to suboptimal con-
ditions, allowing the species to persist without growing. A 
niche is thus delimited by the zero net growth isocline, and 
its ’  shape is defi ned by its optimum and breadth. Identifying 
the envelope is challenging, as it would require knowledge of 
population growth rates with respect to each combination of 
environmental conditions  –  which is hard to obtain for wild 
animals. On the contrary, information on the niche opti-
mum and breadth can be obtained through the analysis of 
animal behaviour. Ideally, to achieve this one should quantify 
the response curves of individuals exposed to the full range 
of available environmental conditions with respect to each 
variable. However, few (if any) individuals or populations 
can choose among the full range of variability for a given 
variable, while for most the choice is constrained by acces-
sibility. When the accessible area does not include the niche 
optimum, individuals are expected to display a monotonic 
response to the focal variable. If optimal habitat is accessible, 
animals are expected to show non-linear responses with a 
peak in proximity of the niche optimum (Fig. 1). Following 
Whittaker et   al. (1973), we argue that whenever experimen-
tation is not possible the fundamental niche may be approxi-
mated only through a generalization of all measurable realized 
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  Figure 1.     For each environmental variable, a niche can be represented by a Gaussian curve delimited by its envelope (i.e. the value that the 
function asymptotically approaches far from the peak  –  0 in the fi gure), and shaped by the curve ’ s optimum (or mean, indicated by the 
arrows, in (a) and breadth (or variance, (b)). Within the range of values of the fundamental niche of a species (blue), the realized niche of 
a population (red) can have a diff erent optimum, and narrower breadth.  

niches of the species ’  populations. Hence, we developed an 
approach to combine the response curves of individuals/pop-
ulations exposed to diff erent means and ranges of availability 
for each variable into one response curve that approximates 
the species ’  optimal values and tolerance thresholds, i.e .  the 
fundamental niche optimum and breadth. 

 As a case study we used GPS-locations from 147 wild 
mountain reindeer  Rangifer t. tarandus , belonging to 7 of the 
last remaining populations, to approximate the subspecies ’  
niche optimum and breadth within the distribution range, in 
south Norway. Archaeological data and recent studies show 
that before industrial development Norwegian wild reindeer 
were grouped into intermixed population units performing 
massive seasonal migrations between adjacent mountain sys-
tems (Vistnes et   al. 2004, Panzacchi et   al. 2013b). Largely 
due to the development of infrastructures, mainly along 
valley bottoms, Norwegian wild reindeer can no longer fol-
low most of their traditional migration routes and are now 
divided into more than 20 virtually isolated sub-populations 
confi ned within areas which do not necessarily provide opti-
mal amounts of both summer and winter pastures. Using data 
from the largest and most representative sub-populations, we 
aimed at characterizing and predicting both all sub-popula-
tions ’  present realized niches and approximating the species ’  
fundamental niche, i.e .  the environmental preferences rein-
deer would exhibit if there were no barriers to movements 
 –  which would correspond to reindeer movement behaviour 
before industrial development. We predict that each realized 
niche model will have a good predictive power for each focal 
population for which it was developed, but will poorly 
predict across populations. On the contrary, we predict that 
the approximation of the fundamental niche model will 
produce more robust predictions at the species ’  level, thus 
allowing for inter-population comparisons in habitat quality. 

 Th e realized niches were identifi ed straight-forwardly 
by comparing used to accessible habitat within each of 
the sub-populations, which are primarily delimited by trans-
portation infrastructures (Panzacchi et   al. 2013b; no inter-
specifi c competition occurs in the mountain). To identify 
the species ’  fundamental niche we extrapolated behavioural 
choices of individuals  ‘ trapped ’  in diff erent sub-populations 
and, therefore, exposed to a limited amount of the environ-
mental variation occurring throughout the species ’  range. 
To strengthen and generalize the applicability of our approach 
we explored the amount of data needed to obtain reliable 
estimates for niche parameters. Recent studies demonstrated 

that the ability to detect habitat selection is infl uenced by 
both the number of individuals tracked and tracking fre-
quency, with the former being substantially more important 
above a certain threshold in tracking frequency (B ö rger et   al. 
2006, Girard et   al. 2006). We go further and investigated 
through both simulations and real data the eff ect of 
adding more individuals and more populations, with 
diff ering ranges of habitat availability, on the estimation of 
niche parameters.  

 Methods  

 Study area 

 Norwegian wild reindeer are divided into more than 20 
isolated populations, each occupying a dedicated manage-
ment area in southern Norway; we studied 7 of the largest 
populations during winter (Fig. 2a, b). Although manage-
ment areas span a wide range of environmental characteristics, 
they are mostly located above the tree line and are infl uenced 
by an east-west climatic gradient, with the western part 
subjected to oceanic infl uences characterized by abundant 
rain and snow precipitation and the eastern part experienc-
ing more continental climate. Also an east-west gradient 
in terrain ruggedness can be identifi ed, with more rugged 
terrain and higher mountain peaks in the western areas close 
to the fj ords, compared to the less rugged terrains in the 
mountain plateau in the east (Bakkestuen et   al. 2008). 

 Each management area is largely delimited by transporta-
tion infrastructures, which strongly constrain wild reindeer 
movements (Panzacchi et   al. 2013b). Reindeer are the only 
ungulate inhabiting the harsh Norwegian mountain plateau; 
hence, no inter-specifi c competition occurs. Predation is 
an irrelevant cause of mortality for wild reindeer; however, 
golden eagles  Aquila chrysaetos  occasionally prey upon calves, 
and wolverines  Gulo gulo , which are mainly scavengers, have 
been reported killing reindeer. Th e main reindeer mortality 
factor is hunting, which keeps densities well below carrying 
capacity  –  thus preventing strong density-dependent 
feedback eff ects.   

 Reindeer GPS data 

 GPS data were collected for 147 adult females belonging to 
7 of the largest and most representative management areas 
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  Figure 2.     Distribution range of wild mountain reindeer in Norway  –  which coincides with their European distribution range (a)  –  and 
detail of the study areas, which consists of 7 of the largest and most representative wild reindeer management areas (b). In (c) are illustrated, 
for each management area, the home ranges of wild reindeer females during winter estimated using kernel UD 95%.  

(Fig. 2): S. Ryfylke (15 deer, study period 2006 – 2010), 
S. Austhei (9, 2007 – 2010), Hardangervidda (48, 2001 –
 2010), Norefj ell (10, 2005 – 2007), Nordfj ella (19, 2007 –
 2010), Sn ø hetta (19, 2009 – 2010) and Rondane N (27, 
2005 – 2010). Reindeer were immobilized from helicopter 
(details: Evans et   al. 2013) and equipped with GPS collars 
with drop-off  systems. Due to the large amount of data, for 
each individual we selected only 1 GPS location every 6 h. In 
this paper we focused on winter, which is the limiting season 
for reindeer, but parallel studies are estimating year-round 
niches. January was taken as representative of the winter sea-
son, to avoid including data from the end of autumn migra-
tion or from the beginning of the spring migration. We used 
the R code provided in Bj ø rneraas et   al. (2010) to identify 
and remove a few outliers (i.e. errors in GPS locations); the 
code calculates trajectory-based metrics to identify locations 
arising from highly unrealistic movement patterns Data pro-
cessing and analyses were performed using R.3.0.1 (2013).   

 Environmental layers 

 We linked individual habitat choices to accessible habitat 
represented by trophic resources, climate, topography, and 
man-made infrastructures. Bakkestuen et   al. (2008) syn-
thesized the variation in the major environmental gradients 
in Norway into four principal components, PCs, account-
ing for 75 to 85% of the variation. Th e four resulting maps 
(PC1, 2, 3, 4; 1 km resolution), refl ect the major environ-
mental gradients in the study area. PC1 indicates a regional 
gradient from coast to inland and from oceanic/humid to 

continental areas (oceanic-continental gradient); PC2 indi-
cates regional variation from north to south and from high 
to low altitudes (alpine-nemoral gradient); PC3 represents 
topographic (terrain relief ) variation on fi ner scales than the 
other PCs (high-low terrain ruggedness); PC4 represents 
regional variation from north to south and from inland to 
coast in solar radiation (high-low solar radiation gradient). 
We used PC1 and PC2 because the oceanic-continental gra-
dient and the altitudinal gradients have been long referred 
to as driving factor for seasonal migrations in reindeer. PC3 
and PC4 were chosen, respectively, because the access to 
sub-nivean vegetation is facilitated in wind-blown ridges, 
and in sunny areas favoring snow-melt. We also used a veg-
etation map, NORUT (Johansen 2009, resolution 30    �    30 
m), identifying 25 vegetation types including lichen mats, 
heather, etc. As proxies of human disturbance we used the 
density of public and private roads, skiing and hiking trails, 
private cabins, tourist cabins and power lines. Th e densities 
of point and line features were calculated with ESRI ArcMap 
10.0 within diff erent search radii (1, 2, 3, 5, 10, 15 km); 
we let the model identify the most relevant scale for each 
variable (see next paragraphs). Variables were standardized 
to mean 0 and standard deviation 1.   

 Defi ning accessibility 

 Selection occurs when a given habitat is used dispropor-
tionately compared with its availability, the latter being the 
amount accessible to the animal (Beyer et   al. 2010). Hence, 
defi ning accessibility is a crucial step in selection studies. 
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 on a log-scale, and we included in the model both the lin-
ear and the quadratic terms. We then calculated the niche 
optimum  μ  s  and breadth  σ  s  2 , with respect to each variable of 
interest using the regression coeffi  cients: 

   m s      �     �   1    �   �   2  ( or,  m   s      �     –  �   1  / (2   �   �   2 )) (2)  –  niche optimum 

   s s  2      �        –  1 / (2   �   �   2 ) (3)  –  niche breadth 

 Note that the niche breadth will only be defi ned when  β  2     �    0, 
as only then the curve has a Gaussian shape; the larger the 
coeffi  cient in absolute value, the larger the niche. Note 
also that quadratic terms should be avoided whenever the 
estimated optimum falls outside the range of available 
values. To avoid this problem, we fi rst set up a model using 
quadratic terms and we performed a preliminary model 
selection. After, we calculated  μ , and made sure that it fell 
within the range of available values; if not, the quadratic term 
was not included in the full model. To ensure comparability 
of the results, we adopted a similar modeling approach and 
used CLR also to estimate each population ’ s realized niche; 
in this case, however, calculations were done separately for 
each population.   

 Selection of variables and model selection 

 As some of the proxies of human disturbance were cor-
related, we calculated the residuals of the regressions 
between correlated variables: 1) density of tourist cabins 
and trails (rTrails); 2) density of private roads, public 
roads and private cabins (rPrivRoad); 3) density of power 
lines and public roads (rPowerLine). We selected the most 
infl uential radius of infl uence for each variable through a 
preliminary model selection, and we used it to initialize 
the full model, as follows. First, we calculated residuals 
at matching radii for the density layers (e.g. rTrails, with 
both cabins and trails calculated within 1 km), we built 
univariate models using each radius, and we selected the 
model with lowest Akaike information criteria, AIC. If 
the sign of a coeffi  cient changed from negative to positive 
for increasing radii, we selected the model with lowest 
AIC among those with negative coeffi  cients, as a change 
in sign would refl ect changes in the ecological meaning 
of that variable (Polfus et   al. 2011). Th en, we used the 
selected radii to recalculate the residuals (e.g. rTrails, with 
cabins at 1 km and trails at 5 km). Disturbance variables 
calculated in this way entered the full model together 
with PCs and vegetation classes from the land cover 
map (excluding one class representing the intercept). We 
started a backward iterative model selection procedure by 
removing variables with a Variance Infl ation Factor (VIF, 
which measures how much the variance of an estimated 
regression coeffi  cient is increased because of collinearity; 
Kutner et   al. 2004) above 5, and we further reduced this 
model. We repeated the selection of the best disturbance 
radius for the reduced model, and we reiterated the pre-
vious steps until the model no longer changed. Finally, 
to account for temporal autocorrelation in the residuals 
we calculated robust standard errors following Forester 
et   al. (2009), and we removed from the model variables 
non-statistically diff erent from zero.   

Underestimating availability would lead to underestimate 
selection, while overestimating it including suitable not-
accessible habitat would yield misleading results (Barve 
et   al. 2011). If, for example, reindeer were confi ned to 
areas without lichens (preferred winter fodder) and we 
would include non-accessible areas containing lichens, 
the model would erroneously conclude lichen avoidance. 
Notwithstanding the importance of correctly defi ning 
accessibility, no tools are available to do so. Hence, acces-
sibility was defi ned for each population based on results 
of previous studies (Panzacchi et   al. 2013a, b) showing 
avoidance of transportation infrastructures, steep ridges 
and glaciers in our study area, and low or null probability 
of crossing of roads and railways (see also Reimers and 
Colman 2006, Vistnes and Nelleman 2008). We fi rst iden-
tifi ed areas actually used by radio-monitored individuals 
from each given population, and we delimited along the 
closest road, fj ord or glacier. Note, however, that such 
delimiting features were included in the accessible area, to 
allow the model detecting responses to them. Hence, we 
obtained 7 (at times slightly overlapping) accessible areas, 
one for each of the studied populations (Fig. 2a).   

 Modeling the species ’  fundamental niche and the 
populations ’  realized niches 

 We attempted to model the fundamental niche of wild 
reindeer in Norway using conditional logistic regres-
sion (CLR) with a log-link function in a use-available 
design, using the coxph function from the  ‘ survival ’  library 
(Th erneau and Lumley 2009). CLR is similar to ordinary 
logistic regression, except that observations are grouped into 
strata and a separate baseline probability (i.e. intercept) is 
fi tted to each stratum. Each individual location was paired 
with 10 available points randomly sampled within the popu-
lation range to which that individual belonged; each group 
(1 used    �    10 available points) represented a stratum. Hence, 
CLR compared only (i.e .  conditioned) the characteristics of 
points used by each individual with those available within 
the population range to which that individual belonged to. 
Note that no individual or population identifi ers directly 
entered the model. To account for diff erences in the num-
ber of observations between populations we weighted each 
observation so that each population contributed equally to 
the model. Hence, the model estimates one single response 
curve for a  ‘ typical ’  Norwegian reindeer, based on the com-
bination of the responses of each animal at each given time 
to what was available in that given population. 

 While for most variables we expected linear responses 
(and we included them using linear terms), for PCs 1 – 4 we 
expected non-linear response curves, and we thus modelled 
niche optimum and breadth. Following Austin (1999), a 
niche can be approximated with a Gaussian curve with the 
optimum represented by the curve mean  μ  and the breadth 
represented by the variance  σ  2  (Fig. 1). As a Gaussian curve 
on a linear scale equals a second degree polynomial on a log 
scale, we modeled Gaussian shaped response curves using 
second degree polynomials: 

  y    �     �   1    �  X  �   �   2    �  X  2  (1) 
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On the contrary, although no population showed an opti-
mal altitudinal preference within the available area (Fig. 3b, 
Supplementary material Appendix 1, Table A2), the funda-
mental niche model was able to identify an optimal altitude, 
clearly shifted towards higher-altitude areas, as expected in 
this season (Fig. 3b, Supplementary material Appendix 1, 
Table A2). Note that Fig. 3 shows the range of values avail-
able to each population (e.g. Norefj ell has a small range of 
available areas all shifted towards the continentality end of 
the continuum ,  Fig. 3a), but does not inform about mean 
values or shape of the distribution; thus, it is interesting to 
pinpoint that the only population showing preference for 
lower-altitude areas inhabits the highest mountain range 
(Fig. 3b, Sn ø hetta). Th e prediction from the fundamen-
tal niche model suggests that in absence of barriers large 
amounts of preferred winter habitat would be located on a 
large mountain plateau (Hardangervidda) in the south, and 
on the continental side of the northern area (Rondane N; 
Fig. 4a). On the contrary, in Ryfylke (south-west) there is a 
high discrepancy between realized and fundamental niche, 
suggesting that this population would have migrated to areas 
with better winter habitat if not constrained by physical or 
behavioral barriers (Fig. 4a, b). 

 Both fundamental and realized niche models performed 
well, as both models succeeded in capturing the most used 
areas within each population. Validation revealed that models 
performed well. Th e correlation coeffi  cient between the aver-
age proportion of pixels used in each study area and the pre-
dicted habitat preference according to the fundamental niche 
model was high (Spearman rank test  δ     �    0.985, p    �    0.001; 
coeffi  cients ranged from  δ     �    0.83 to  δ     �    0.98). Th e results of 
the cross validation also supported the robustness of the fun-
damental niche model ( δ     �    0.964, p    �    0.001; coeffi  cients 
ranged from  δ     �    0.64 to  δ     �    0.97). Th e Nordfj ella popula-
tion had the lowest fi t ( δ     �    0.64), likely due to changes dur-
ing the study period that aff ected availability diff erently for 
diff erent individuals. 

 Th e correlations between the proportion of pixels used 
within each management area and the predicted habi-
tat preference according to the realized niche models were 
also high: Rondane N:  δ     �    0.969, p    �    0.001; Sn ø hetta: 
 δ     �    0.969, p    �    0.001; Nordfj ella:  δ     �    0.969, p    �    0.001; 
Norefj ell:  δ     �    0.937, p    �    0.001; Hardangervidda:  δ     �    0.988, 
p    �    0.001; S. Austhei:  δ     �    0.610, p    �    0.061; S. Ryfylke: 
 δ     �    0.996, p    �    0.001). As expected, when using each of the 
7 realized niche models to predict in each of the other 6 
areas we recorded wide variability in the validation coeffi  -
cients, which ranged from  δ     �     – 0.418 to  δ     �    1.000 (average: 
0.79    �    0.26 SD).  

 The effect of sample size in simulated and real data 

 Analyses of simulated data demonstrated that both estimates 
for the niche optimum and breadth started stabilizing after 
adding a relatively small number of populations (Fig. 5b) 
and individuals per population (Fig. 5a). Th e precise num-
ber of populations and individuals required to obtain stable 
estimates depends on the level of precision required by each 
research project, and Fig. 5 should serve as a basis for infer-
ring the sampling regime required to obtain the desired level 

 Model validations 

 We performed model validations for both the realized and 
the fundamental niche models by classifying predicted pref-
erence values into 10 equal-sized categories, and by calcu-
lating the Spearman correlation coeffi  cient between these 
categories and the proportion of used versus available points 
in each category  –  averaged over populations for the fun-
damental niche model. In addition, similar to Boyce et   al. 
(2002), we further validated the fundamental niche model 
using cross validation: we parameterized the model by 
excluding one of the populations in turn, predicted in the 
population excluded and compared these predictions with 
the classifi ed data as described above. We also cross-validated 
the realized niches parameterized on one population, and 
predicted values from each of the other populations were 
compared to the classifi ed data as described above.   

 Effect of adding populations/individuals to the 
estimation of niche parameters 

 We used both simulations and real data to understand the 
eff ect of adding individuals (or locations) and populations on 
the estimation of the linear and quadratic terms (Eq. 1) and, 
consequently, on the estimation of the fundamental niche 
optimum and breadth (Eq. 2 and 3). Diff erent simulated 
individuals (n    �    500, each contributing with 100 locations) 
and populations (n    �    50, each containing 10 individuals) 
were assigned diff erent means and ranges of availability for 
a hypothetical environmental variable. For each individual/
population we generated used points, sampled using the spe-
cies ’  Gaussian curve as a probability function, and available 
points, obtained by randomly sampling within the range of 
availability for each individual. Used and available points 
were paired and used as a dependent variable in a CLR, as 
described above. When using simulated data the regression 
was reiterated 10 000 times by randomly taking an increas-
ing n of individuals (from 10 to 500) or populations (1 to 
50). Note that the results of the individual/population simu-
lations are comparable, as the total number of locations is 
the same (50 populations corresponds to 500 individuals). 
As the number of individuals varies among populations, 
when using real data we calculated regressions for all possible 
combinations of individuals at increasing steps, from 1 to 
the total number of individuals for that population.    

 Results 

 Th e winter realized niche models for each of the 7 popula-
tions diff ered largely with respect to which variables were 
included and their eff ect sizes, and also diff ered from the 
winter fundamental niche model (Supplementary material 
Appendix 1, Table A1, Table A2), supporting that realized 
niches are constrained by geographical barriers. Th e realized 
niche models showed that most populations show optimal 
preferences with respect to the oceanic-continental con-
tinuum, which is clearly shifted towards continental areas 
(Fig. 3a, Supplementary material Appendix 1, Table A2); 
accordingly, the fundamental niche model shows an opti-
mum close to continental end of this continuum (Fig. 3a). 
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  Figure 3.     Response curves to PC1 (oceanic-continental gradient, (a)) and to PC2 (alpine-nemoral gradient, (b)), as predicted by the 
approximation of the fundamental niche model (thick line, grey) and by the 7 realized-niche models for each of the studied populations 
(colored) during winter.  

  Figure 4.     Model prediction for the approximation of the fundamental niche of wild mountain reindeer in Norway during winter (a), and 
model predictions for the 7 realized niches of each of the studied reindeer populations during winter (b).  

of precision. Using real reindeer data, the estimation of the 
fundamental niche optimum and breadth for two of the 
environmental variable used in the models, PC1 and PC2, 
started to stabilize after adding ca 4 populations (Fig. 6; see 
Fig. 1 for eff ect of sample size of individuals). Th us, although 
we used a fairly low number of populations (n    �    7), the fun-
damental niche model appeared to be robust. Th e observed 
eff ect of adding more individuals on the parameter estimates 

for each population is shown in Supplementary material 
Appendix 1, Fig. A1.    

 Discussion 

 Although strictly speaking a comprehensive characterization 
of an Hutchinsonian fundamental niches is unfeasible, the 
niche concept can be rephrased operationally to describe a 
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  Figure 5.     Simulations illustrating the eff ect of increasing the n of individuals (from 10 to 500, each contributing with 100 locations; top 
panels), or of populations (from 1 to 50, each population contributing with 10 individuals each with 100 locations; bottom panels) on the 
estimation of the fundamental niche optimum (Eq. 2, left) and breadth (Eq. 3, right). Th is fi gure can support the identifi cation of the 
appropriate sampling regimes for obtaining estimates of niche optima and breadth with the level of precision required by diff erent research 
projects. For each parameter set we performed 10 000 simulations. For each simulation set we display the mean and twice the associated 
standard error; the horizontal line shows the true values in the simulations. Note that simulating 10 individuals with 100 locations each 
corresponds to simulating 5 individuals with 200 locations each.  

subset of environmental space corresponding to geographic 
areas where a population (in the case of realized niche) or 
species (fundamental niche) can persist indefi nitely (Sober ó n 
2007). Within this operational framework, we developed a 
novel approach to extrapolate from a patchwork of realized 
niches of populations distributed throughout the species ’  
range to obtain the closest representation of a species ’  funda-
mental niche to date for large animals (Fig. 4a). Furthermore, 
we show empirically the relationship between fundamental 
and realized niches  –  the latter being subsets of the funda-
mental niche (Fig. 3). Th is has several crucial theoretical and 
applied implications. For example, as predicted by Peterson 
et   al. (2012), it may lead to the identifi cation of some por-
tions of a fundamental niche which may actually not exist 
anywhere on Earth, or that have not been yet observed within 
the sampled realized niches. On a practical perspective, the 
comparison between fundamental and realized niches can 
lead for example to the identifi cation of populations inhabit-
ing sub-optimal ranges, which would allow making research-
based decisions on conservation priorities and developing 
targeted and cost-effi  cient mitigation measures. 

 Within each area, both realized and fundamental niche 
models performed well, by highlighting similar optimal and 

sub-optimal areas used by reindeer. Note, however, that due 
to its larger and more representative sample size, the fun-
damental niche model is less likely to suff er from problems 
related to co-linearity of explanatory variables and to over-
fi tting, which may bias classical realized-niche models devel-
oped for smaller areas. As expected, the approximation of 
the fundamental niche model provided invaluable additional 
information compared to the realized niche models at the 
species ’  range scale. In our case study each of the 7 realized 
niche models (Fig. 4b) well described population distribution 
(Fig. 2c) within each area for which it was built, but failed in 
predicting across populations. On the contrary the approxi-
mation of the fundamental niche model (Fig. 4a), in addi-
tion to well characterizing population distribution within 
each area, allowed advancing our understanding of the spe-
cies ’  potential distribution in absence of spatial constraints. 
In particular, the model produced robust, nation-wide pre-
dictions providing the unprecedented opportunity to con-
trast reindeer management areas in terms of habitat quality. 
Th is showed that while some populations inhabit optimal 
winter ranges (e.g. Hardangervidda), others are  ‘ trapped ’  in 
sub-optimal winter areas (e.g. Ryfylke), with potential con-
sequences on carrying capacity and fi tness parameters of the 
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  Figure 6.     Observed eff ect of increasing the number of reindeer populations (from 1 to 7, the latter is the total n of populations in the study) 
on the estimation of the linear and quadratic terms (Eq. 1) and on the estimation of the fundamental niche optimum and breadth (Eq. 2 
and 3, respectively), for two of the environmental variables used in the models: PC1 (oceanic-continental gradient) and PC2 (alpine-
nemoral gradient: Bakkestuen et   al. 2008). Th e mean estimate from all combinations of populations is shown with the standard deviation 
around this mean. Th e horizontal line represents our best estimate, obtained using all 7 populations.  

population living therein. Indeed, parallel studies have dem-
onstrated a link between the observed diff erences in fi tness 
among populations and diff erences in range quality as indi-
cated by the approximation of the fundamental niche model 
(Nilsen et   al. pers. comm.). Furthermore, the comparison 
among areas in terms of seasonal habitat quality allowed us 
to understand the drivers of past seasonal migrations, now 
lost largely due to the construction of infrastructures. For 
example, the scarcity of optimal winter habitat in Ryfylke 
explains the reasons of past seasonal migrations of this popu-
lation towards the neighbouring Hardangervidda plateau, 
as also demonstrated by archaeological fi ndings (Panzacchi 
et   al. 2013b). Hence, the approximation of the fundamen-
tal niche model provided invaluable information to identify 
populations and areas to be prioritized for management, 
conservation and mitigation actions. 

 Simulations of synthetic data (Fig. 5 bottom) and move-
ment data from isolated populations scattered throughout 
the subspecies ’  range (Fig. 6), demonstrated that a good 
approximation of the fundamental niche can be robustly 
and rapidly estimated by including a relatively limited 
number of new populations, each composed by relatively 
few individuals. Note that although the parameters ’  preci-
sion increases also with the addition of individuals from a 
single population (Supplementary material Appendix 1, Fig. 
A1), their accuracy does not improve substantially after a 
certain threshold, and their real values may never be cor-
rectly estimated (Fig. 5, top). Hence, not only is the ability 
to correctly estimate habitat selection more infl uenced by the 
number of individuals than by tracking frequency (now that 

GPS-technology allows for quite high tracking frequency; 
B ö rger et   al. 2006, Girard et   al. 2006), but we also demon-
strated that it is more aff ected by the addition of individuals 
from diff erent populations, rather than from more individu-
als from the same population. Th e number of individuals or 
populations needed to robustly identify niche optimum and 
breadth depends largely on the level of precision required by 
diff erent research projects. Th e results of the simulations in 
Fig. 5 aim at supporting project leaders in identifying the 
appropriate sampling regime (i.e. decide where to intensify 
the sampling eff ort in terms of individuals or in which area 
to start new telemetry studies) for obtaining estimates of 
niche optima and breadth with the required level of preci-
sion. In our case, both the simulations (Fig. 5, 6) and the 
analysis of real data (Supplementary material Appendix 1, 
Fig. A1) show that the 7 populations used in this study, with 
on average 21 individuals per population  –  each tracked over 
multiple years  –  seem suffi  cient to obtain stable and reliable 
parameter estimates. 

 Several challenges still need to be tackled to increase 
precision and accuracy in the search for the niche optimum 
and breadth. In particular, we envision the need to investi-
gate the sensitivity of niche parameters to: 1) the addition of 
individuals/populations with diff erent variability in resource 
availability; 2) behavioral variability among individuals/
populations (e.g. some of our reindeer populations used 
to be semi-domestic, and thus seem to respond diff erently 
to disturbance; Reimers et   al. 2012); 3) diff erences in den-
sity among population, with consequent repercussions on 
niche breadth (Van Horne 1983, McLoughlin et   al. 2010); 
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4) diff erent assumptions in terms of niche shapes (Hirzel and 
Le Lay 2008), including the possibility of holes (Blonder 
et   al. 2014); 5) interactions between predictors. Finally, 
one should note that our approach allows approximating 
niche optimum and breadth, but it does not provide infor-
mation regarding the niche  ‘ envelope ’  or  ‘ zero net growth 
isocline ’  (Tilman 1980, Hirzel and Le Lay 2008). Indeed, 
the Gaussian curves ’  breadth calculated in Eq. 3 equals 
the niche breadth for each possible envelope, and thus the 
actual niche breadth of a given species depends on both 
Eq. 3 and on the envelope. In other words, we identify the 
continuum between optimal and sub-optimal areas and we 
can thus compare niche optimum and breadth across popu-
lations (Fig. 4), but we cannot identify precisely the  ‘ zero 
net growth isocline ’  (i.e. the cutoff  line between source-sink 
areas). Ongoing studies integrating animal spatial behavior 
and population dynamics can help solving this challenging 
task (Nilsen et   al. pers. comm.), which represents one of the 
main frontiers in ecology (Boyce et   al. pers. comm.). 

 Still, we believe that the approximation of the fundamen-
tal niche, as provided here, is a major step in reliably predict-
ing the potential distribution of a species and its tolerance to 
environmental changes. On a more general perspective, we 
believe that the search for the fundamental niche using indi-
vidual-based models is worth pursuing, as it allows scaling up 
from classical habitat selection studies, concerned with habi-
tat use given availability (often in fragmented landscapes), 
to fundamental niche studies, concerned with potential 
habitat use if animals could act in an unconstrained manner. 
Th is would open for the possibility to test for a wide range of 
hypotheses relating optimal habitat choices to fi tness, inves-
tigating deviations from the ideal free distribution across 
populations (Galanthay and Flaxman 2012), and assessing 
species ’  plasticity to natural and man-made environmental 
changes.               
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